您现在的位置是:网站首页> 编程资料编程资料
python人工智能tensorflow函数tf.assign使用方法_python_
2023-05-26
383人已围观
简介 python人工智能tensorflow函数tf.assign使用方法_python_
参数数量及其作用
该函数共有五个参数,分别是:
- 被赋值的变量 ref
- 要分配给变量的值 value、
- 是否验证形状 validate_shape
- 是否进行锁定保护 use_locking
- 名称 name
def assign(ref, value, validate_shape=None, use_locking=None, name=None) Update 'ref' by assigning 'value' to it. This operation outputs a Tensor that holds the new value of 'ref' after the value has been assigned. This makes it easier to chain operations that need to use the reset value. Args: ref: A mutable `Tensor`. Should be from a `Variable` node. May be uninitialized. value: A `Tensor`. Must have the same type as `ref`. The value to be assigned to the variable. validate_shape: An optional `bool`. Defaults to `True`. If true, the operation will validate that the shape of 'value' matches the shape of the Tensor being assigned to. If false, 'ref' will take on the shape of 'value'. use_locking: An optional `bool`. Defaults to `True`. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. name: A name for the operation (optional). Returns: A `Tensor` that will hold the new value of 'ref' after the assignment has completed.
该函数的作用是将一个要分配给变量的值value赋予被赋值的变量ref,用于tensorflow各个参数的变量赋值。
例子
该例子将举例如何进行变量之间的数据赋值和如何进行集合间的数据赋值。
import tensorflow as tf; import numpy as np; c1 = ['c1', tf.GraphKeys.GLOBAL_VARIABLES] c2 = ['c2', tf.GraphKeys.GLOBAL_VARIABLES] #常量初始化器 v1_cons = tf.get_variable('v1_cons',dtype = tf.float32,shape=[1,4], initializer=tf.constant_initializer(), collections = c1) v2_cons = tf.get_variable('v2_cons',dtype = tf.float32,shape=[1,4], initializer=tf.constant_initializer(9), collections = c1) #正太分布初始化器 v1_nor = tf.get_variable('v1_nor',dtype = tf.float32, shape=[1,4], initializer=tf.random_normal_initializer(mean=0, stddev=5), collections = c2) v2_nor = tf.get_variable('v2_nor',dtype = tf.float32, shape=[1,4], initializer=tf.random_normal_initializer(mean=0, stddev=5), collections = c2) assign1 = tf.assign(v1_cons,v2_cons) #将v2_cons赋予v1_cons c1_get = tf.get_collection('c1') #获得c1集合 c2_get = tf.get_collection('c2') #获得c2集合 assign2 = [tf.assign(cg1,cg2) for cg1,cg2 in zip(c1_get,c2_get) ] #将c2赋予c1 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print("v1_cons:",sess.run(v1_cons)) print("v2_cons:",sess.run(v2_cons)) print(sess.run(assign1)) #显示赋值后的结果 print("将v2_cons赋予v1_cons:",sess.run(v1_cons)) print("c1_get_collection:",sess.run(c1_get)) print("c2_get_collection:",sess.run(c2_get)) print(sess.run(assign2)) #显示赋值后的结果 print("将c2赋予c1:",sess.run(c1_get)) 其输出为:
v1_cons: [[0. 0. 0. 0.]] v2_cons: [[9. 9. 9. 9.]] [[9. 9. 9. 9.]] 将v2_cons赋予v1_cons: [[9. 9. 9. 9.]] c1_get_collection: [array([[9., 9., 9., 9.]], dtype=float32), array([[9., 9., 9., 9.]], dtype=float32)] c2_get_collection: [array([[-3.9746916, -7.5332146, 2.4480317, -1.3282107]], dtype=float32), array([[10.687443 , 3.6653206, 1.7079141, -4.524155 ]], dtype=float32)] [array([[-3.9746916, -7.5332146, 2.4480317, -1.3282107]], dtype=float32), array([[10.687443 , 3.6653206, 1.7079141, -4.524155 ]], dtype=float32)] 将c2赋予c1: [array([[-3.9746916, -7.5332146, 2.4480317, -1.3282107]], dtype=float32), array([[10.687443 , 3.6653206, 1.7079141, -4.524155 ]], dtype=float32)]
以上就是python人工智能tensorflow函数tf.assign使用方法的详细内容,更多关于tensorflow函数tf.assign的资料请关注其它相关文章!
您可能感兴趣的文章:
相关内容
- Python爬虫获取基金基本信息_python_
- python人工智能tensorflow常见损失函数LOSS汇总_python_
- pytorch部署到jupyter中的问题及解决方案_python_
- python人工智能tensorflow函数tf.layers.dense使用方法_python_
- python实现水印生成器_python_
- Python错误+异常+模块总结_python_
- Python基于文件内容实现查找文件功能_python_
- python神经网络facenet人脸检测及keras实现_python_
- 使用python实现简单去水印功能_python_
- 通过 for 循环比较 Python 与 Ruby 的编程区别_python_
